Google Search

Monday, June 22, 2009

Temperature Changes

Temperature changes

Two millennia of mean surface temperatures according to different reconstructions, each smoothed on a decadal scale. The unsmoothed, annual value for 2004 is also plotted for reference.

The most commonly cited indication of global warming is the trend in globally averaged temperature near the Earth's surface. This global mean temperature has increased by 0.75 °C (1.35 °F) relative to the period 1860–1900, according to the instrumental temperature record. The urban heat island effect is estimated to account for about 0.002 °C of warming per decade since 1900.[8] Temperatures in the lower troposphere have increased between 0.12 and 0.22 °C (0.22 and 0.4 °F) per decade since 1979, according to satellite temperature measurements. Temperature is believed to have been relatively stable over the one or two thousand years before 1850, with regionally-varying fluctuations such as the Medieval Warm Period or the Little Ice Age.

Based on estimates by NASA's Goddard Institute for Space Studies, 2005 was the warmest year since reliable, widespread instrumental measurements became available in the late 1800s, exceeding the previous record set in 1998 by a few hundredths of a degree.[9] Estimates prepared by the World Meteorological Organization and the Climatic Research Unit concluded that 2005 was the second warmest year, behind 1998.[10][11] Temperatures in 1998 were unusually warm because the strongest El Niño in the past century occurred during that year.[12]

Temperature changes vary over the globe. Since 1979, land temperatures have increased about twice as fast as ocean temperatures (0.25 °C per decade against 0.13 °C per decade).[13] Ocean temperatures increase more slowly than land temperatures because of the larger effective heat capacity of the oceans and because the ocean loses more heat by evaporation.[14] The Northern Hemisphere warms faster than the Southern Hemisphere because it has more land and because it has extensive areas of seasonal snow and sea-ice cover subject to the ice-albedo feedback. Although more greenhouse gases are emitted in the Northern than Southern Hemisphere this does not contribute to the difference in warming because the major greenhouse gases persist long enough to mix between hemispheres.[15]

The thermal inertia of the oceans and slow responses of other indirect effects mean that climate can take centuries or longer to adjust to changes in forcing. Climate commitment studies indicate that even if greenhouse gases were stabilized at 2000 levels a further warming of about 0.5 °C (0.9 °F) would still occur

From Wikipedia (Articles Global Warming)

No comments:

Post a Comment